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Silyl ketene acetals have received much attention in the 
literature since the early work of McElvain and co-work- 
ers.ly2 These ester enolate equivalents are used extensively 
in Michael additions3 and aldol  condensation^.^ Webster 
and co-workers have used silyl ketene acetals in an acrylate 
polymerization technique known as group-transfer polym- 
erization (GTP).5 In GTP, a silyl ketene acetal initiates 
condensation polymerization of acrylates and continues 
through sequential Michael additions. 

One route to silyl ketene acetals involves the reaction 
of an alkali-metal enolate with a chlorosilane.6 Transi- 
tion-metal-catalyzed hydrosilylations of a,@-unsaturated 
esters have also been While the use of platinum 
catalyst has been r e p ~ r t e d , ~  rhodium catalysts are more 
frequently used.8 The disadvantage of the rhdoium ca- 
talysis method is the formation of inseparable isomers, 
which reduce the purity of the isolated product. Ojima 
and co-workers,8 for example, reported the (Ph,P),RhCl- 
catalyzed preparation (sealed ampule) of several di- 
methylketene silyl acetals in GC yields of 80-9670. The 
silyl acetals were not isolated as pure compounds but 
contained 525% of a 1,Zcarbonyl adduct. Nevertheless, 
the overall benefits of a catalytic procedure led us to re- 
investigate the rhodium catalysis route. 

A solution of methyl methacrylate (MMA), 16% molar 
excess of trimethylsilane, and 400 molar ppm (Ph,P),RhCl 
was stirred under nitrogen in a Parr pressure reactor for 
5 h a t  100 OC. Gas chromatographiemass spectral (GC- 
MS) examination of the product mixture showed l-meth- 

(1) (a) McElvain, S. M. Chem. Rev. 1949, 49, 453. (b) McElvain, S. 
M. J. Am. Chem. SOC. 1959,81, 2579. 

(2) See also: Petrov, A. D.; Sudykh-Zade, S. I.; Filatova, E. I. J. Gen. 
Chem. USSR (Engl. Transl.) 1959,29, 2898. 
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1984,883. (d) Combie, R. C.; Davis, P. F.; Rutledge, P. S.; Woodgate, P. 
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C.; Poli, G.; Scolastico, C. Tetrahedron Lett .  1985, 26, 6509. 
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oxy-l-(trimethylsiloxy)-2-methylprop-l-ene ( 1),lo as the 
major product, the 1,2-carbonyl adduct 2,11 and the vinyl 
addition product 312 (eq 1). The GC (with FID) area ratio 

Me 
I (Ph3P)jRhCI 

CH,=CCO,Me + Me3SiH - 
Me 
I 

,0SiMe3 

+ CH,=C-CH + Me3SiCH2CC02Me (1) 
PSiMe3 

Me2C=C 

'OMe 'OMe 

1 2 3 

was 7:1:1, respectively, with an isolated yield of 50-60% 
for 1 and a substantial amount of poly(MMA). Lowering 
the temperature favored less polymer formation, with only 
a slight increase in the 1:2 ratio. Silyl ketene acetal 1 could 
not be isolated from 2 by distillation. 

The total amount of trimethylsilane used and its rate 
of consumption up to the stoichiometric end point had a 
significant effect on the product distribution. For example, 
a reaction of MMA with a stoichiometric amount of tri- 
methylsilane and a reaction with 30% molar excess of 
trimethylsilane were each carried out. Only the reaction 
with 30% excess showed a loss of adduct 2 after 5 h a t  50 
"C. Treatment of an isolated mixture of 1 ,2 ,  and 3 with 
excess trimethylsilane and (Ph3P),RhC1 results in a de- 
crease in 2, without change in l or 3. On the other hand, 
a slower addition rate of the silane afforded an 80% yield 
of 1 and a 0.3% yield of 3. The rate of trimethylsilane 
consumption was faster with RhCl3.6H2O, and conversion 
to product was almost instantaneous a t  50 OC. Thus, the 
reaction could be carried out at a faster addition rate, and 
it could be done in a standard round-bottom flask, instead 
of a sealed ampule or pressure reactor. A modest increase 
in the yield of 1 to 85% was also obtained with RhC1,. 
6H20, and the product did not contain 2 or 3 after dis- 
tillation (>98% pure). 

The verstaility of this improved procedure was demon- 
strated when excess trimethylsilane and RhC1,.6H20 were 
used to prepare the dimethylketene trimethylsilyl acetals 
shown in eq 2. Furthermore, synthesis of a difunctional 
silyl ketene acetal 9 was achieved in 75% isolated yield 
from ethylene glycol dimethylacrylate (see Experimental 
Section). The amount of polymer formed was - 1 % when 
2,6-di-tert-butyl-4-methylphenol was added, and the re- 
action was conducted under nitrogen containing 2% oxy- 
gen. 

(2) 
PSiMe3 Me 

I RhCb*6Hfl 
CH,=CCO,R + MeoSiH - Me2C=C 

\ 
4 'OR 

5 - 8  

R = CHzCH-CH2 (5), CH2CH20SiMe3 (6), (CH2)3Si(OMe)3 (7), SiMe3 (8) 

'0' 

Experimental Section 
Reagents and chemicals were used as received from the man- 

ufacturers unless otherwise specified. Trimethylsilane, tri- 
methylsilyl methacrylate, 3-(trimethylsi1oxy)ethyl methacrylate, 
and 3-(trimethoxysily1)propyl methacrylate were obtained from 

(10) Adam, N.; del Fierro, J. J. Org. Chem. 1978, 43, 1159. 
(11) The spectral data were similar to those reported elsewhere for 

analogous compounds: GC-MS m / e  (% re1 int) 159 (22, P - 15), 143 (24), 
133 (94), 89 (69), 73 (100); GC FT-IR 1060 em-' for SiOC; NMR (DCCl,) 
1.7 (s, 3 H), 3.2 (s, 3 H), 3.6 (s, 1 H), 5.0 (m, 2 H) as a mixture containing 
1. See ref 8. 

(12) The spectra of 3 matched that of an independently synthesized 
sample. See: Chalk, A. J .  Organomet. Chem. 1970,21, 207. Speier, J. L.; 
Webster, J. A,; Barnes, G. H. J .  Am. Chem. SOC. 1957, 79, 974. 
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Dow Corning Corp. Methyl methacrylate and glycidyl meth- 
acrylate were obtained from Aldrich Chemical Co. 

GC analyses were performed either on a Varian 3700 gas 
chromatograph equipped with a flame ionization detector (FID) 
and a €10- or 12-m fused-silica capillary silica column. Routine 
GC-MS analyses were performed on a Hewlett-Packard 5970A 
MSD instrument. Chemical ionization mass spectra were obtained 
on a Finnigan 4610 mass spectrometer with CHI as the reagent 
gas. IR spectra were obtained on a Perkin-Elmer 1330 spectro- 
photometer or on a Nicolet 60SX GC FTIR. 'H NMR were 
obtained on a Varian EM-390 90-MHz spectrometer and are 
reported on the 6 scale. High-resolution mass spectra were ob- 
tained from Iowa State University Analytical Services. 

l-Glycidoxy-l-(trimethylsiloxy)-2-methylprop-l-ene (5). 
General Synthesis of Dimethylketene Trimethylsilyl Ace- 
tals. Preparation of 5 is exemplary of the procedure used to 
prepare the other silyl ketene acetals. A stirred solution of lo00 
g (7.0 mol) of glycidyl methacrylate, 0.28 g (1.06 X of 
RhC13.6H20, 0.5 g of 2,6-di-tert-butyl-4-methylphenol, and 38 mL 
of THF was heated to 38 "C, under nitrogen containing 2% 
oxygen, in a 2-L round-bottom flask equipped with a dry ice cooled 
condenser. The heating mantle was removed, and the addition 
of trimethylsilane was started from a stainless steel tank at 20 
psi. When about 30 mL of trimethylsilane had been added, an 
exothermic reaction occurred, causing a temperature rise to about 
50 "C before cooling was applied. The remainder of the tri- 
methylsilane was added over a 1.5-h period, the temperature was 
maintained between 40 and 50 "C by compressed-air cooling. A 
dark brown mixture was removed from the flask and sealed in 
a half-gallon bottle. GC of the mixture after 24 h showed 5 and 
the corresponding vinyl adduct in a 75:l ratio. After fractional 
distillation (bp 82 "C at 9 mmHg), 1512 g (80%) of 5 was obtained 
in 98% purity:13 NMR (DCCl,) 0.20 (s, 9 H), 1.45 (s, 3 H), 1.55 
(s, 3 H), 2.6 (m, 2 H), 3.1 (m, 1 H), 3.7 (m, 2 H); IR (neat) 1700 
cm-'; GC-MS m l e  (% re1 int) (216 (3), 73 (100),70 (40), 57 (17), 
23 (13); high-resolution mass for CloHzo03Si measured 216.0072, 
calculated 216.3544. 

1-Methoxy-1-(trimethylsiloxy)-2-methylprop-l-ene (1). 
Silyl ketene acetal 1 was obtained in 85% isolated yield (42 OC 
at 13 mmHg). The spectra of 1 matched those reported in the 
literature:6*10 NMR (DCC13) 0.20 (s, 9 H), 1.50 (s, 3 H), 1.57 (s, 
3 H), 3.45 (s ,3  H); IR (neat) 1704,1183 cm-'; chemical ionization 
MS (CHI) m / e  175 (P + 1); GC-MS m l e  174 (13),89 (26),73 (76), 
70 (100). 

l-(2-(Trimethylsiloxy)ethyl)-l-(trimethylsiloxy)-2- 
methylprop-l-ene (6). Silyl ketene acetal 6 was obtained in 77% 
isolated yield (bp 100 "C at 4 mmHg). The spectra of 6 matched 
those reported in the literature:6 NMR (DCC13) 0.10 (s,9 H), 0.20 
(s, 9 H), 1.50 (s, 3 H), 1.57 (s, 3 H), 3.70 (s, 2 H); IR (neat) 1710 
cm-'; GC-MS m l e  (% re1 int) 276 (5), 147 (lo), 117 (20), 116 (12), 
75 (12), 73 (loo), 70 (11); high-resolution mass for C,2H2803Siz 
measured 276.1577, calculated 276.6021. 

l-(2-(Trimethoxysilyl)propyl)-l-(trimethylsiloxy)-2- 
methylprop-l-ene (7). Silyl ketene acetal 7 was obtained in 66% 
isolated yield (bp 110 "C at 3 mmHg): NMR (DCC13) 0.16 (s, 9 
H), 0.60 (m, 2 H), 1.50 (s, 3 H), 1.56 (s, 3 H), 1.70 (m, 2 H), 3.50 
(s,9 H), 3.60 (t, J = 6 Hz, 2 H); IR (neat) 1705 cm-'; GC-MS m / e  
(% re1 int) 322 (41,176 (111, 163 (181,122 (la), 121 (loo), 91 (391, 
75 (la), 73 (42), 70 (23), 61 (lo), 45 (16), 41 (12); high-resolution 
mass for C13H3005Si2 measured 322.1629, calculated 322.5517. 

l,l-Bis(trimethylsiloxy)-2-methylprop-l-ene (8). Silyl 
ketene acetal 8 was obtained in 78% isolated yield (bp 86 "C at 
14 mmHg):" NMR (DCC13) 0.20 (s, 18 H), 1.47 (s,6 H); IR (neat) 
1705 cm-'; GC-MS m / e  (% re1 int) 232 (lo), 217 (20), 147 (45), 
75 (21), 70 (70), 69 (21), 45 (44); high-resolution mass for Clo- 
H3002Si2 measured 238.1864, calculated 238.5203. 

1 ,%-Bis( 1 -( trimethylsiloxy)-2-met hylprop- 1 -enoxy )ethane 
(9). Silyl ketene acetal 9 was obtained in 75% isolated yield (bp 
110 "C at 2-3 mmHg). The spectra of 9 matched those reported 
in the l i terat~re:~ NMR (DCCl,) 0.20 (s, 18 H), 1.50 (s, 6 H), 1.56 
(s, 6 H), 3.80 (s, 4 H); IR (neat) 1710 cm-'; GC-MS m / e  (% re1 
int) 188 ( lo) ,  117 (lo), 103 (lo), 75 (13), 73 (loo), 70 (13). 

(13) The distilled purity was typically >98%, but hydrolysis t o  hexa- 
methyldisiloxane and the corresponding isobutyrate ester occasionally 
occurred. See ref 8. 
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Independent Removal of the Carbonyl Adduct. The re- 
moval of carbonyl adduct 2 is exemplary of the method used for 
the other silyl ketene acetals. Excess trimethylsilane was added 
to a solution containing 0.0409 g (4.4 X mol) of (Ph3P)3RhCl 
and 20.0 g (0.115 mol) of a distilled mixture of 1,2, and 3 (4021 
ratio) to which was added toluene as an internal GC standard. 
The mixture was stirred 3 days at room temperature. After this 
time GC analysis showed a loss of 2 with no change in 1 or 3. 
Subsequent experiments showed 24 h to be sufficient for removal 
of 2 at room temperature or 5 h at 50 "C. 
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The utility of free-radical reactions in organic synthesis 
has received considerable attention in the past decade.' 
Particularly important in this regard has been a resurgence 
in the use of carbon radical addition to olefins for the 
formation of carbon-carbon bonds. We have focused our 
attention on the utility of free-radical chemistry for the 
synthesis of fluorinated compounds of biological interest. 
Herein we report a convenient synthesis of l-fluoro-l- 
(phenylsulfony1)ethylene (3) and the addition of a-oxy- 
radicals to 3 as a new method to synthesize fluoroorganics. 

The synthesis of 3 was recently reported by a method 
requiring perchloryl fluoride, freshly prepared from po- 
tassium perchlorate and fluorosulfonic acid.2 A new 
synthesis of 3 was developed (Scheme I), which utilizes the 
fluoro-Pummerer reaction3 and provides a safe and con- 
venient method to multigram quantities of 3 from com- 
mercially available materials. P-Chloroethyl phenyl sulf- 
oxide (1) was treated with diethylaminosulfur trifluoride 
(DAST)3 and a catalytic amount of antimony trichloride 
for 1 h a t  room temperature to provide the corresponding 
a-fluoro sulfide. The use of antimony trichloride as a 
catalyst for the fluoro-Pummerer reaction was recently 
introduced by  robin^,^ and we concur that this catalyst 
is superior to zinc i ~ d i d e . ~  The a-fluoro sulfide was oxi- 
dized to the sulfone 2, without isolation, in an overall yield 
of 64%. Elimination of hydrogen chloride from 2 was 
readily effected with DBU to provide crystalline 3 in 86% 
yield. 

While investigating the utility of 3 for the synthesis of 
fluorinated tetrahydrofurans, we found that the addition 
of a catalytic amount of benzoyl peroxide to a mixture of 
THF and 3 (reflux for 9 h) led to a diastereomeric mixture 
of 1 - (2-fluoro-2- (phenylsulfonyl)ethyl)tetrahydrofuran (4a 

(1) (a) Giese, B. Radicals in Organic Synthesis: Formation of Car- 
bon-Carbon Bonds; Pergamon Press: Oxford, 1986. (b) Curran, D. P. 
Synthesis 1988, 417, 489, and references cited therein. 

(2) Koizumi, T.; Hagi, T.; Horie, Y.; Takeuchi, Y. Chem. Pharm. Bull. 
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